See More Details
Efficient Image Super-Resolution by Experts Mining

1University of Würzburg, Germany 2Shanghai Jiao Tong University, China 3ETH Zürich, Switzerland
ICML 2024, Vienna
*Corresponding authors
Ours
Ours
Before
Before
Ours
Ours
Before
Before
Ours
Ours
Before
Before

Abstract

Reconstructing high-resolution (HR) images from low-resolution (LR) inputs poses a significant challenge in image super-resolution (SR). While recent approaches have demonstrated the efficacy of intricate operations customized for various objectives, the straightforward stacking of these disparate operations can result in a substantial computational burden, hampering their practical utility. In response, we introduce **S**eemo**R**e, an efficient SR model employing expert mining. Our approach strategically incorporates experts at different levels, adopting a collaborative methodology. At the macro scale, our experts address rank-wise and spatial-wise informative features, providing a holistic understanding. Subsequently, the model delves into the subtleties of rank choice by leveraging a mixture of low-rank experts. By tapping into experts specialized in distinct key factors crucial for accurate SR, our model excels in uncovering intricate intra-feature details. This collaborative approach is reminiscent of the concept of **see more**, allowing our model to achieve an optimal performance with minimal computational costs in efficient settings

Architecture Overview

Efficiency Tradeoff

Image 1
Image 2
Image 3
Image 4

Results

Efficient SR Results

Citation

@inproceedings{zamfir2024details,
  title={See More Details: Efficient Image Super-Resolution by Experts Mining}, 
  author={Eduard Zamfir and Zongwei Wu and Nancy Mehta and Yulun Zhang and Radu Timofte},
  booktitle={International Conference on Machine Learning},
  year={2024},
  organization={PMLR}
}